当前位置:首页 » 半导体业 » 怎么找硅锗半导体施主杂质

怎么找硅锗半导体施主杂质

发布时间: 2021-03-14 05:28:57

⑴ 请高手详细介绍一下半导体缺陷理论,急用!@!

半导体 能带 p型半导体 n型 半导体 晶体二极管、三极管
【半导体】 导电性能介于导体和绝缘体之间非离子性导电的物质。室温时其电阻率约为10-3~l09欧姆·厘米。一般是固体。例如锗(Ge)、硅(Si)以及一些化合物半导体。如碲化铅(PbTe)、砷化铟(InAs)、硫化铅(PbS)、碳化硅(SiC)等。与金属材料不同,半导体中杂质含量和外界条件的改变(如温度变化、受光照射等),都会使半导体的导电性能发生显著变化。纯度很高,内部结构完整的半导体,在极低的温度下几乎不导电,接近绝缘体。但随着温度的升高半导体的电阻迅速减小。含有少量杂质,内部结构不很完整的半导体通常可分为n型和p型两类。半导体的p-n结以及半导体同某些金属相接触的边界层,都具有单向导电或在光照下产生电势差的特性。利用这些特性可以制成各种器件,如半导体二极管、三极管和集成电路等。半导体之所以具有介于导体和绝缘体之间的导电性,是因为它的原子结构比较特殊,即其外层电子既不象导体那样容易挣脱其原子核的束缚,也不象绝缘体中的电子被原子核紧紧地束缚着。这就决定了它的导电性介于两者之间。
【能带】 研究固体物理学中的一种理论。虽然所有的固体都包含大量的电子,但有的具有很好的电子导电性能,有的则基本上观察不到任何电子导电性。这一基本事实曾长期得不到解释。在能带理论的基础上,首次对为什么有导体、绝缘体和半导体的区分提出了一个理论上的说明,这是能带论发展初期的重大成就。在物理学中往往形象化地用水平横线表示电子的能量值,能量越大,线的位置越高。一定能量范围内的许多能级(彼此相隔很近)形成一条带,称为“能带”。各种晶体的能带数目及其宽度等均不相同。相邻两能带间的能量范围称为“能隙”或“禁带”,晶体中的电子不能具有这种能量。完全被电子占据的能带称为“满带”,满带中的电子不会导电;没有电子占据的带称为“空带”;部分被占据的称为“导带”,导带中的电子才能导电,价电子所占据的能带称为“价带”。能量比价带低的各能带一般都是满带。价带可以是满带也可以是导带;如在金属中是导带,所以金属能导电,在绝缘体和半导体中是满带,所以它们不能导电。但半导体很容易因其中有杂质或受外界影响(如光照、加热等),使价带中的电子数减少,或使空带中出现一些电子而成为导带,因而也能导电。
【本征半导体】 不含杂质且结构非常完整的半导体单晶,其中参与导电的电子和空穴数目相等。温度极低时,其电阻率很大,极难导电;随着温度升高,电阻率急剧减小。当硅、锗等半导体材料制成单晶体时,其原子的排列就由杂乱无章的状态变成非常整齐的状态。其原子之间的距离都是相等的,约为2.35×10-4微米。每个原子最外层的4个电子,不仅受自身原子核的束缚,而且还与周围相邻的4个原子发生联系。这时,每两个相邻的原子之间都共有一对电子。电子对中的任何一个电子,一方面围绕自身原子核运动,另一方面也时常出现在相邻的原子所属的轨道上,这样的组合叫做“共价键”结构。硅、锗共价键结构的特点是它们外层共有的电子所受到的束缚力并不象在绝缘体中那样紧,在一定的温度下,由于热运动,其中少数电子还是可能挣脱束缚而成为自由电子,形成电子载流子。当共有电子在挣脱束缚成为自由电子后,同时留下了一个空位。有了这样一个空位,附近的共有电子就很容易来进行填补,从而形成共有电子的运动。这种运动,无论是效果上还是现象上,都好象一个带正电荷的空位子在移动。为了区别于自由电子的运动,就把这种运动叫做“空穴”运动,空位子叫做“空穴”。由此可见,空穴也是一种载流子。当半导体处于外加电压作用之下,通过它的电流可以看作是由自由电子的定向移动所形成的电子流,另一部分是带正电的空穴定向移动。所以半导体中,不仅有电子载流子还有空穴载流子,这是半导体导电的一个特点。这种纯单晶半导体,虽然多了一种空穴载流子,但是载流子的总数离开实际应用的要求,也就是从具有良好导电能力的要求来看,还相差很远,所以这种本征半导体的实际用处不大。
【杂质半导体】在纯单晶的本征半导体中,掺杂一些有用的杂质,使其导电特性得到很大的改善。而其导电性能取决于杂质的类型和含量。这样的半导体即称为“杂质半导体”。大多数半导体都是这一种类型。将半导体材料提纯,再用扩散或用离子注入法掺入适当的杂质,可以制成n型半导体或p型半导体。利用不同类型的杂质半导体,可以制成整流器,半导体二极管、半导体三极管和集成电路等重要部件。由此可以看到,只有杂质半导体才是最有用的。
【n型半导体】“n”表示负电的意思,在这类半导体中,参与导电的主要是带负电的电子,这些电子来自半导体中的“施主”杂质。所谓施主杂质就是掺入杂质能够提供导电电子而改变半导体的导电性能。例如,半导体锗和硅中的五价元素砷、锑、磷等原子都是施主杂质。如果在某一半导体的杂质总量中,施主杂质的数量占多数,则这种半导体就是n型半导体。如果在硅单晶中掺入五价元素砷、磷。则在硅原子和砷、磷原子组成共价键之后,磷外层的五个电子中,四个电子组成共价键,多出的一个电子受原子核束缚很小,因此很容易成为自由电子。所以这种半导体中,电子载流子的数目很多,主要靠电子导电,叫做电子半导体,简称n型半导体。
【p型半导体】“p”表示正电的意思。在这种半导体中,参与导电的主要是带正电的空穴,这些空穴来自于半导体中的“受主”杂质。所谓受主杂质就是掺入杂质能够接受半导体中的价电子,产生同数量的空穴,从而改变了半导体的导电性能。例如,半导体锗和硅中的三价元素硼、铟、镓等原子都是受主。如果某一半导体的杂质总量中,受主杂质的数量占多数,则这半导体是p型半导体。如果在单晶硅上掺入三价硼原子,则硼原子与硅原子组成共价键。由于硼原子数目比硅原子要少很多,因此整个晶体结构基本不变,只是某些位置上的硅原子被硼原子所代替。硼是三价元素,外层只有三个价电子,所以当它与硅原子组成共价键时,就自然形成了一个空穴。这样,掺入的硼杂质的每一个原子都可能提供一个空穴,从而使硅单晶中空穴载流子的数目大大增加。这种半导体内几乎没有自由电子,主要靠空穴导电,所以叫做空穴半导体,简称p型半导体。
【p-n结】在一块半导体中,掺入施主杂质,使其中一部分成为n型半导体。其余部分掺入受主杂质而成为p型半导体,当p型半导体和n型半导体这两个区域共处一体时,这两个区域之间的交界层就是p-n结。p-n结很薄,结中电子和和空穴都很少,但在靠近n型一边有带正电荷的离子,靠近p型一边有带负电荷的离子。这是因为,在p型区中空穴的浓度大,在n型区中电子的浓度大,所以把它们结合在一起时,在它们交界的地方便要发生电子和空穴的扩散运动。由于p区有大量可以移动的空穴,n区几乎没有空穴,空穴就要由p区向n区扩散。同样n区有大量的自由电子,p区几乎没有电子,所以电子就要由n区向p区扩散。随着扩散的进行,p区空穴减少,出现了一层带负电的粒子区;n区电子减少,出现了一层带正电的粒子区。结果在p-n结的边界附近形成了一个空间电荷区,p型区一边带负电荷的离子,n型区一边带正电荷的离子,因而在结中形成了很强的局部电场,方向由n区指向p区。当结上加正向电压(即p区加电源正极,n区加电源负极)时,这电场减弱,n区中的电子和p区中的空穴都容易通过,因而电流较大;当外加电压相反时,则这电场增强,只有原n区中的少数空穴和p区中的少数电子能够通过,因而电流很小。因此p-n结具有整流作用。当具有p-n结的半导体受到光照时,其中电子和空穴的数目增多,在结的局部电场作用下,p区的电子移到n区,n区的空穴移到p区,这样在结的两端就有电荷积累,形成电势差。这现象称为p-n结的光生伏特效应。由于这些特性,用p-n结可制成半导体二极管和光电池等器件。如果在p-n结上加以反向电压(n区加在电源正极,p区加在电源负极),电压在一定范围内,p-n结几乎不通过电流,但当加在p-n结上的反向电压越过某一数值时,发生电流突然增大的现象。这时p-n结被击穿。p-n结被击穿后便失去其单向导电的性能,但结并不一定损坏,此时将反向电压降低,它的性能还可以恢复。根据其内在的物理过程,p-n结击穿可分为雪崩击穿和隧道击穿两种。由于p-n结具有这种特性,一方面可以用它制造半导体二极管,使之工作在一定电压范围之内作整流器等;另方面因击穿后并不损坏而可用来制造稳压管或开关管等器件。
【晶体二极管】亦称为“半导体二极管”。一种由半导体材料制成的,具有单向导电特性的两极器件。早期的半导体二极管是用金属丝尖端触在半导体晶片上制成的,称为点接触二极管,通常在较高的频率范围内作检波、混频器用。目前大多数的晶体二极管都是面结型的,它是由半导体晶片上形成的p-n结组成,或由金属同半导体接触组成,可用于整流,检波、混频、开关和稳压等。除一般用途的二极管外,还有一些用于特殊用途,利用特殊原理制成的二极管。例如:(1)肖特基二极管(又称为金属-半导体二极管):用某些金属和半导体相接触,在它们的交界面处便会形成一个势垒区(通常称为“表面势垒”或“肖特基势垒”),产生整流,检波作用。在这种二极管中,起导电作用的热运动能量比较大的那些载流子,所以又叫“热载流子二极管”。这种二极管比p-n结二极管有更高的使用频率和开关速度,噪声也比较低,但工作电流较小,反向耐压较低。目前它主要用作微波检波器和混频器,已在雷达接收机中代替了点接触二极管;(2)隧道二极管:它是一种具有负阻特性的半导体二极管。目前主要用掺杂浓度较高的锗或砷化镓制成。其电流和电压间的变化关系与一般半导体二极管不同。当某一个极上加正电压时,通过管的电流先将随电压的增加而很快变大,但在电压达到某一值后,忽而变小,小到一定值后又急剧变大;如果所加的电压与前相反,电流则随电压的增加而急剧变大。因为这种变化关系,只能用量子力学中的“隧道效应”加以说明,故称隧道二极管。它具有开关、振荡、放大等作用,应用在电子计算机和微波技术中;(3)变容二极管;它是利用p-n结的电容特性来实现放大、倍频、调谐等作用的一种二极管。由于它的结电容随外加电压而显著变化,所以称为“变容二极管”。制造变容二极管所用的半导体材料主要用硅和砷化镓。在作微波放大时,它的优点是具有很低的噪声;(4)雪崩二极管:亦称为“碰撞雪崩渡越时间二极管”。是一种在外加电压作用下可以产生超高频振荡的半导体二极管。它的工作原理是:利用p-n结的雪崩击穿在半导体中注入载流子,这些载流子渡越过晶片流向外电路。由于这一渡越需要一定的时间,因而使电流相对于电压出现一个时间延迟,适当控制渡越时间,在电流和电压的关系上会出现负阻效应,因而能够产生振荡。雪崩二极管主要用在微波领域作为振荡源;(5)发光二极管:一种在外加正向电压作用下可以发光的二极管。它的发光原理是:在正向电压作用下,p-n结中注入很多非平衡载流子,这些载流子复合时,多余的能量转化为光的形式发射出来。发光二极管经常用作电子设备中的指示灯、数码管等显示元件,也可用于光通讯。它的优点是工作电压低,耗电量小体积小、寿命长。制造发光二极管所用的半导体材料主要是磷砷化镓、碳化硅等。

【晶体三极管】 亦称为“半导体三极管”或简称“晶体管”。它是一种具有三个电极,能起放大、振荡或开关等作用的半导体器件。按工作原理不同,可分为结型晶体管和场效应晶体管。结型晶体管是在半导体单晶上制备两个p-n结,组成一个p-n-p(或n-p-n)的结构,中间的n型(或p型)区叫基区,边上两个区域分别叫发射区和集电区,这三部分都有电极与外电路联接,分别称为“发射极”以字母e表示、“基极”以字母b表示和“集电极”以字母c表示。在电子线路中,用符号代表p-n-p型和n-p-n型晶体管如图3-17所示。晶体管用作放大器时,在发射极和基极之间输入电信号,以其电流控制集电极和基极(或集电极和发射极)之间的电流,从而在负载上获得放大的电信号。同电子管相比晶体管具有体积小、重量轻、耐震动、寿命长,耗电小的优点,但受温度影响较大。目前常用的晶体管主要是用锗或硅晶体制成。场效应晶体管是利用输入电压的电场作用控制输出电流的一种半导体器件。场效应晶体管又分为结型场效应晶体管和金属—氧化物—半导体场效应晶体管两大类。金属—氧化物—半导体场效应晶体管简称为MOS晶体管,它的结构如图3-18所示,其中1为栅极;2为绝缘层;3为沟道;4为源;5为漏。制作过程为在n型(或p型)晶片上扩散生成两个p型(或n型)区,分别称为源和漏,从上面引出源极(接电压正端)和漏极(接负端),源和漏之间有一个沟道区,在它上面隔一层氧化层(或其它绝缘层)制作一层金属电极称为“栅极”。在场效应晶体管工作时,栅极电压的变化会引起沟道导电性能的变化,也就是说栅极电压变化控制了源漏之间的电流变化。场效应晶体管的特点是输入阻抗高和抗辐射能力强。

【集成电路】 它是一种微型电子器件或部件。是采用一定的工艺,把一个电路中所需要的晶体管、电阻、电容和电感等,制作在一小块或几小块晶片或陶瓷基片上,再用适当的方法进行互连而封装在一个管壳内,成为具有所需功能的微型电路结构。集成电路已打破了传统的电路设计概念,因为集成电路中的晶体管、二极管、电阻、电容、电感等各元件在结构上已组成一个整体,这样整个电路的体积大大缩小,且引出线和焊接点的数目也大大减少,从而使电子元件向着微小型化,低功耗和高可靠性方面迈进了一大步。用集成电路来装配电子设备,其装配密度比用分立式晶体管等元器件组装的电子设备提高几十倍到上百倍,设备的稳定工作时间也可大大提高。因此集成电路在电子计算机、通讯设备、导弹、雷达、人造卫星和各种遥控、遥测设备中占据了非常重要的地位。根据制造工艺的不同,目前集成电路主要有半导体集成电路、薄膜集成电路、厚膜集成电路和混合集成电路等几类。根据性能和用途的不同,又可分为数字集成电路、线性集成电路和微波集成电路等。近年来集成电路的发展极为迅速。早期半导体集成电路的集成度是每个晶片上只有几十个元件,目前集成度已高达每片包含几千个甚至上万个元件。习惯把由一百个以上的门电路或一千个以上的晶体管集成在一块晶片上,并互连成具有一个系统或一个分系统功能的电路称为“大规模集成电路”。
【半导体集成电路】 亦称“固体电路”或“单块集成电路”,它是在一块半导体单晶片(一般是硅片)上,用氧化、扩散或离子注入,光刻、蒸发等工艺做成晶体管、二极管、电阻和电容等元件,并用某种隔离技术使它们在电性能上互相绝缘,而在晶片表面用金属薄膜使有关元件按需要互相连接,最后被封装在一个管壳里而构成一个完整电路。半导体集成电路制造方法比较简便,成本低廉、可靠性高、体积也比较小,是目前集成电路中生产和应用最多的一种

⑵ 介绍下半导体的掺杂问题

杂质半导体: 通过扩散工艺,在本征半导体中掺入少量合适的杂质元素,可得到杂质半导体。
P型半导体的导电特性:掺入的杂质越多,多子(空穴)的浓度就越高,导电性能也就越强。
结论:
多子的浓度决定于杂质浓度。
少子的浓度决定于温度。
PN结的形成:将P型半导体与N型半导体制作在同一块硅片上,在它们的交界面就形成PN结。
PN结的特点:具有单向导电性。
半导体杂质 半导体中的杂质对电阻率的影响非常大。半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产加的杂质能级。例如四价元素锗或硅晶体中掺入五价元素磷、砷、锑等杂质原子时,杂质原子作为晶格的一分子,其五个价电子中有四个与周围的锗(或硅)原子形成共价结合,多余的一个电子被束缚于杂质原子附近,产生类氢能级。杂质能级位于禁带上方靠近导带底附近。杂质能级上的电子很易激发到导带成为电子载流子。这种能提供电子载流子的杂质称为施主,相应能级称为施主能级。施主能级上的电子跃迁到导带所需能量比从价带激发到导带所需能量小得多(图2)。在锗或硅晶体中掺入微量三价元素硼、铝、镓等杂质原子时,杂质原子与周围四个锗(或硅)原子形成共价结合时尚缺少一个电子,因而存在一个空位,与此空位相应的能量状态就是杂质能级,通常位于禁带下方靠近价带处。价带中的电子很易激发到杂质能级上填补这个空位,使杂质原子成为负离子。价带中由于缺少一个电子而形成一个空穴载流子(图3)。这种能提供空穴的杂质称为受主杂质。存在受主杂质时,在价带中形成一个空穴载流子所需能量比本征半导体情形要小得多。半导体掺杂后其电阻率大大下降。加热或光照产生的热激发或光激发都会使自由载流子数增加而导致电阻率减小,半导体热敏电阻和光敏电阻就是根据此原理制成的。对掺入施主杂质的半导体,导电载流子主要是导带中的电子,属电子型导电,称N型半导体。掺入受主杂质的半导体属空穴型导电,称P型半导体。半导体在任何温度下都能产生电子-空穴对,故N型半导体中可存在少量导电空穴,P型半导体中可存在少量导电电子,它们均称为少数载流子。在半导体器件的各种效应中,少数载流子常扮演重要角色。
半导体掺杂
半导体之所以能广泛应用在今日的数位世界中,凭借的就是其能借由在其晶格中植入杂质改变其电性,这个过程称之为掺杂(doping)。掺杂进入本质半导体(intrinsic semiconctor)的杂质浓度与极性皆会对半导体的导电特性产生很大的影响。而掺杂过的半导体则称为外质半导体(extrinsic semiconctor)。
半导体掺杂物
哪种材料适合作为某种半导体材料的掺杂物(dopant)需视两者的原子特性而定。一般而言,掺杂物依照其带给被掺杂材料的电荷正负被区分为施体(donor)与受体(acceptor)。施体原子带来的价电子(valence electrons)大多会与被掺杂的材料原子产生共价键,进而被束缚。而没有和被掺杂材料原子产生共价键的电子则会被施体原子微弱地束缚住,这个电子又称为施体电子。和本质半导体的价电子比起来,施体电子跃迁至传导带所需的能量较低,比较容易在半导体材料的晶格中移动,产生电流。虽然施体电子获得能量会跃迁至传导带,但并不会和本质半导体一样留下一个电洞,施体原子在失去了电子后只会固定在半导体材料的晶格中。因此这种因为掺杂而获得多余电子提供传导的半导体称为n型半导体(n-type semiconctor),n代表带负电荷的电子。
和施体相对的,受体原子进入半导体晶格后,因为其价电子数目比半导体原子的价电子数量少,等效上会带来一个的空位,这个多出的空位即可视为电洞。受体掺杂后的半导体称为p型半导体(p-type semiconctor),p代表带正电荷的电洞。
以一个硅的本质半导体来说明掺杂的影响。硅有四个价电子,常用于硅的掺杂物有三价与五价的元素。当只有三个价电子的三价元素如硼(boron)掺杂至硅半导体中时,硼扮演的即是受体的角色,掺杂了硼的硅半导体就是p型半导体。反过来说,如果五价元素如磷(phosphorus)掺杂至硅半导体时,磷扮演施体的角色,掺杂磷的硅半导体成为n型半导体。
一个半导体材料有可能先后掺杂施体与受体,而如何决定此外质半导体为n型或p型必须视掺杂后的半导体中,受体带来的电洞浓度较高或是施体带来的电子浓度较高,亦即何者为此外质半导体的“多数载子”(majority carrier)。和多数载子相对的是少数载子(minority carrier)。对于半导体元件的操作原理分析而言,少数载子在半导体中的行为有着非常重要的地位。

⑶ 杂质半导体都应用在那些方面

半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产生附加的杂质能级。能提供电子载流子的杂质称为施主(donor)杂质,相应能级称为施主能级,位于禁带上方靠近导带底附近。例如四价元素锗或硅晶体中掺入五价元素磷、砷、锑等杂质原子时,杂质原子作为晶格的一分子,其五个价电子中有四个与周围的锗(或硅)原子形成共价键,多余的一个电子被束缚于杂质原子附近,产生类氢浅能级—施主能级。施主能级上的电子跃迁到导带所需能量比从价带激发到导带所需能量小得多,很易激发到导带成为电子载流子,因此对于掺入施主杂质的半导体,导电载流子主要是被激发到导带中的电子,属电子导电型,称为N型半导体。由于半导体中总是存在本征激发的电子空穴对,所以在n型半导体中电子是多数载流子,空穴是少数载流子。
相应地,能提供空穴载流子的杂质称为受主(acceptor)杂质,相应能级称为受主能级,位于禁带下方靠近价带顶附近。例如在锗或硅晶体中掺入微量三价元素硼、铝、镓等杂质原子时,杂质原子与周围四个锗(或硅)原子形成共价结合时尚缺少一个电子,因而存在一个空位,与此空位相应的能量状态就是受主能级。由于受主能级靠近价带顶,价带中的电子很容易激发到受主能级上填补这个空位,使受主杂质原子成为负电中心。同时价带中由于电离出一个电子而留下一个空位,形成自由的空穴载流子,这一过程所需电离能比本征半导体情形下产生电子空穴对要小得多。因此这时空穴是多数载流子,杂质半导体主要靠空穴导电,即空穴导电型,称为p型半导体。在P型半导体中空穴是多数载流子,电子是少数载流子。在半导体器件的各种效应中,少数载流子常扮演重要角色。
杂质半导体与本征半导体的区别
不含杂质和缺陷的纯净半导体,其内部电子和空穴浓度相等,称为本征半导体。本征半导体不宜用于制作半导体器件,因其制成的器件性能很不稳定。反之,掺入一定量杂质的半导体称为杂质半导体或非本征半导体,这是实际用于制作半导体器件及集成电路的材料。

P型半导体中的载流子
在硅(或锗)的晶体内掺入少量三价元素杂质,如硼(或铟)等,因硼原子只有三个价电子,它与周围硅原子组成共价键时,因缺少一个电子,在晶体中便产生一个空位,当相邻共价键上的电子受到热振动或在其他激发条件下获得能量时,就有可能填补这个空位,使硼原子成为不能移动的负离子,而原来硅原子的共价键则因缺少一个电子,形成了空穴,半导体呈中性。
因为硼原子在硅晶体中能接受电子,故称硼为受主杂质或P型杂质。加入硅或锗的受主杂质除硼外尚有铟和铝。而加入砷化镓的受主原子包括元素周期表中的Ⅱ族元素(作为镓原子的受主)或Ⅳ族元素(作为砷原子的受主)。

P型半导体的共价键结构
值得注意的是,在产生空穴的同时,并不产生新的自由电子,只是原来的晶体本身仍会产生少量的电子—空穴对。控制掺入杂质的多少,便可控制空穴数量。在P型半导体中,空穴数远大于自由电子数,在这种半导体中,以空穴导电为主,因而空穴为多数载流子,自由电子为少数载流子。http://ic.big-bit.com/

⑷ 以v族元素掺入si中为例,说明什么是施主杂质,施主杂质电离过程和n型半导体

P型半导体:杂来质周期表自第Ⅲ族种元素──受主杂质例硼或铟价电带都三电并且传导带能级低于第Ⅳ族元素传导电能级电能够更容易由锗或硅价电带跃迁硼或铟传导带程由于失电产离于其电言空位所通叫做空穴种材料称P型半导体材料传导主要由带电空穴引起种情况电少数载流

N型半导体:掺入杂质周期表第V族某种元素──施主杂质例砷或锑些元素价电带都五电杂质元素价电能级于锗(或硅)能级电容易能级进入第Ⅳ族元素传导带些材料变半导体传导性由于余负离引起所称N型些材料传导性由于材料余离主要由于量电引起(N型材料)电称数载流
这种提问感觉没有意义
这个可以自己找下资料

⑸ 如何判断施主杂质和n型半导体,受主杂质和p型半导体

化学元素周期表中3主族元素为受主杂质,5主族为施主杂质。
半导体中受主杂质占主导地位为P型,施主杂质占主导地位为N型

⑹ n型硅施主杂质 费米能级

套用公式即可。

⑺ 杂质半导体可以分为哪两种

N型半导复体、P型半导体。制

1、N型半导体在本征半导体硅(或锗)中掺入微量的5价元素,例如磷,则磷原子就取代了硅晶体中少量的硅原子,占据晶格上的某些位置。

2、在本征半导体硅(或锗)中,若掺入微量的3价元素,如硼,这时硼原子就取代了晶体中的少量硅原子,占据晶格上的某些位置。

(7)怎么找硅锗半导体施主杂质扩展阅读

属性:

1、电荷中立的条件:如果导带中的电子浓度为n,价带中的空穴浓度为p,电离的施主浓度为ND,电离的受主浓度为NA,则满足以下电荷中性条件。

2、载流子密度:

考虑所有掺杂杂质被离子化的情况。导带中的电子浓度n,价带中的空穴浓度p和非退化半导体的本征载流子密度ni之间具有以下关系。

参考资料来源:网络-杂质半导体

⑻ 半导体掺杂敏化TiO2,这半导体我该如何选择 ,之前就是加入SnO2,但是好像不对,杂质掺杂是不是一定是硅什

半导体的常用掺杂技术主要有两种,即高温(热)扩散和离子注入。掺入的杂质主要有两类:第一类是提供载流子的受主杂质或施主杂质(如Si中的B、P、As);第二类是产生复合中心的重金属杂质(如Si中的Au)。
(1)热扩散技术:对于施主或受主杂质的掺入,就需要进行较高温度的热扩散。因为施主或受主杂质原子的半径一般都比较大,它们要直接进入半导体晶格的间隙中去是很困难的;只有当晶体中出现有晶格空位后,杂质原子才有可能进去占据这些空位,并从而进入到晶体。为了让晶体中产生出大量的晶格空位,所以,就必须对晶体加热,让晶体原子的热运动加剧,以使得某些原子获得足够高的能量而离开晶格位置、留下空位(与此同时也产生出等量的间隙原子,空位和间隙原子统称为热缺陷),也因此原子的扩散系数随着温度的升高而指数式增大。对于Si晶体,要在其中形成大量的空位,所需要的温度大致为1000度[C]左右,这也就是热扩散的温度。
(2)离子注入技术:为了使施主或受主杂质原子能够进入到晶体中去,需要首先把杂质原子电离成离子,并用强电场加速、让这些离子获得很高的动能,然后再直接轰击晶体、并“挤”进到里面去;这就是“注入”。当然,采用离子注入技术掺杂时,必然会产生出许多晶格缺陷,同时也会有一些原子处在间隙中。所以,半导体在经过离子注入以后,还必须要进行所谓退火处理,以消除这些缺陷和使杂质“激活"。
(3)与掺杂有关的问题:
①Si的热氧化技术:因为当Si表面原子与氧原子结合成一层SiO2后,若要进一步增厚氧化层的话,那么就必须要让外面的氧原子扩散穿过已形成的氧化层、并与下面的Si原子结合,而SiO2膜是非晶体,氧原子在其中的扩散速度很小,因此,往往要通过加热来提高氧原子的热运动能量,使得能够比较容易地进入到氧化层中去,这就是热氧化。所以,Si的热氧化温度一般也比较高(~1000度[C]左右)。
②杂质的激活:因为施主或受主杂质原子要能够提供载流子,就必须处于替代Si原子的位置上。这样才有多余的或者缺少的价电子、以产生载流子。所以在半导体中,即使掺入了施主或受主杂质,但是如果这些杂质原子没有进入到替代位置,那么它们也将起不到提供载流子的作用。为此,就还需要进行一定的热处理步骤——激活退火。
③Au、Pt等重金属杂质原子的扩散:重金属杂质与施主或受主杂质不同,因为重金属杂质的原子半径很小,即使在较低温度下也能够很容易地通过晶格间隙而进入到半导体中去,所以扩散的温度一般较低。例如扩散Au,在700C下,只要数分钟,Au原子即可分布到整个Si片。

热点内容
大尺度同性恋电影男舍男分 发布:2024-05-14 08:11:10 浏览:843
qq小视频群都是哪里找的 发布:2024-05-14 07:55:43 浏览:88
有割女人性器官电影 发布:2024-05-14 07:24:51 浏览:470
律师爱情电影 发布:2024-05-14 07:20:24 浏览:327
课中坏事中黄头发女学生是谁演的 发布:2024-05-14 06:59:53 浏览:779
许锦江电影大全 发布:2024-05-14 06:23:14 浏览:394
英国的机械哥斯拉是哪部电影 发布:2024-05-14 06:20:57 浏览:443
宋佳激情电影 发布:2024-05-14 06:03:51 浏览:731
电影内容和尚大战哄鬼仔名字叫什么? 发布:2024-05-14 06:02:55 浏览:729
学生和老师谈恋爱的电影 发布:2024-05-14 06:00:36 浏览:526