当前位置:首页 » 半导体业 » tio2是什么半导体

tio2是什么半导体

发布时间: 2021-01-08 18:28:05

1. 半导体掺杂敏化TiO2,这半导体我该如何选择 ,之前就是加入SnO2,但是好像不对,杂质掺杂是不是一定是硅什

半导体的常用掺杂技术主要有两种,即高温(热)扩散和离子注入。掺入的杂质主要有两类:第一类是提供载流子的受主杂质或施主杂质(如Si中的B、P、As);第二类是产生复合中心的重金属杂质(如Si中的Au)。
(1)热扩散技术:对于施主或受主杂质的掺入,就需要进行较高温度的热扩散。因为施主或受主杂质原子的半径一般都比较大,它们要直接进入半导体晶格的间隙中去是很困难的;只有当晶体中出现有晶格空位后,杂质原子才有可能进去占据这些空位,并从而进入到晶体。为了让晶体中产生出大量的晶格空位,所以,就必须对晶体加热,让晶体原子的热运动加剧,以使得某些原子获得足够高的能量而离开晶格位置、留下空位(与此同时也产生出等量的间隙原子,空位和间隙原子统称为热缺陷),也因此原子的扩散系数随着温度的升高而指数式增大。对于Si晶体,要在其中形成大量的空位,所需要的温度大致为1000度[C]左右,这也就是热扩散的温度。
(2)离子注入技术:为了使施主或受主杂质原子能够进入到晶体中去,需要首先把杂质原子电离成离子,并用强电场加速、让这些离子获得很高的动能,然后再直接轰击晶体、并“挤”进到里面去;这就是“注入”。当然,采用离子注入技术掺杂时,必然会产生出许多晶格缺陷,同时也会有一些原子处在间隙中。所以,半导体在经过离子注入以后,还必须要进行所谓退火处理,以消除这些缺陷和使杂质“激活"。
(3)与掺杂有关的问题:
①Si的热氧化技术:因为当Si表面原子与氧原子结合成一层SiO2后,若要进一步增厚氧化层的话,那么就必须要让外面的氧原子扩散穿过已形成的氧化层、并与下面的Si原子结合,而SiO2膜是非晶体,氧原子在其中的扩散速度很小,因此,往往要通过加热来提高氧原子的热运动能量,使得能够比较容易地进入到氧化层中去,这就是热氧化。所以,Si的热氧化温度一般也比较高(~1000度[C]左右)。
②杂质的激活:因为施主或受主杂质原子要能够提供载流子,就必须处于替代Si原子的位置上。这样才有多余的或者缺少的价电子、以产生载流子。所以在半导体中,即使掺入了施主或受主杂质,但是如果这些杂质原子没有进入到替代位置,那么它们也将起不到提供载流子的作用。为此,就还需要进行一定的热处理步骤——激活退火。
③Au、Pt等重金属杂质原子的扩散:重金属杂质与施主或受主杂质不同,因为重金属杂质的原子半径很小,即使在较低温度下也能够很容易地通过晶格间隙而进入到半导体中去,所以扩散的温度一般较低。例如扩散Au,在700C下,只要数分钟,Au原子即可分布到整个Si片。

2. 氧化钛型氧传感器的半导体材料二氧化钛的阻值取决于

一般至少有两个。
二氧化钛(化学式:TiO₂),白色固体或粉末状的两性氧化物,分子量:版79.87,是一权种白色无机颜料,具有无毒、最佳的不透明性、最佳白度和光亮度,被认为是目前世界上性能最好的一种白色颜料。钛白的粘附力强,不易起化学变化,永远是雪白的。广泛应用于涂料、塑料、造纸、印刷油墨、化纤、橡胶、化妆品等工业。它的熔点很高,也被用来制造耐火玻璃,釉料,珐琅、陶土、耐高温的实验器皿等。

3. Cu2O、TiO2分别属于什么半导体为什么

氧化铜是来一种具有带隙较自窄带隙(1.2—1.5eV)的p-型半导体材料。硅是目前使用最多的半导体材料,二氧化硅不是半导体。
氧化铜和硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性

4. 黑色tio2是n型还是p型导电

在理想状态下的BiOCl 应该是本征半导体
在实际中 我觉得它应该是n型 BiOCl 是一种光催化剂 类比于内同为光催化剂的容TiO2 其类型和性质应该差不多 TiO2存在非化学计量比缺陷 即电荷缺陷 点缺陷的一种 换句话说 TiO2中非故意掺杂的TiO2中含有Ti2O3(氧成分偏少 偏离TiO2的化学比)Ti2O3中Ti离子为+3价 从而多出一个游离于晶格中的3d电子 使TiO2成为电子导电的n型半导体 所以 我觉得BiOCl 应该也是n型半导体吧
BiOBr、BiOI 只是卤素的替换 我觉得应该和 BiOCl 差不多
我也不知道应该看啥书 看看材料科学基础里面关于晶体缺陷的吧 涉及晶体的非化学计量数缺陷 对晶体材料性能的影响的内容

5. 纯的锐钛型二氧化钛是什么类型的半导体

其实大部分资料网上都是能找到的,最主要的区别就是金红石无论在遮盖、分散等各个方面的性能都要远超锐钛,锐钛在高温下也会转变为金红石。用途上基本都是重叠的,锐钛基本多用于低端一点的产品当中。

6. 二氧化钛半导体性质应用

二氧化钛的电导率随温度的上升而迅速增加,而且对缺氧也非常敏感。
例如,金红版石权型二氧化钛在20℃时还是电绝缘体,但加热到420℃时,它的电导率增加了107倍。
稍微减少氧含量,对它的电导率会有特殊的影响,按化学组成的二氧化钛(TiO2)电导率<10-10s/cm,而TiO1.9987的电导率只有10-1s/cm.

7. 氧化铜和二氧化钛是半导体吗

那必须的呀,一般的金属氧化物都是半导体。

8. 纯的锐钛型二氧化钛是什么类型的半导体

http://ke..com/view/6729945.htm

9. TiO2 是绝缘体还是半导体〉

半导体,宽禁带金属氧化物,Eg=3.2eV(一种常见晶型的),
和ZnO一样,都属于宽禁带半导体

10. 半导体cds和tio2复合属于什么类型

常温下导电性能介于导体(conctor)与绝缘体(insulator)之间的材料,叫做半导体(semiconctor).
什么是光催化?
光触媒[PHOTOCATALYSIS]是光 [Photo=Light] + 触媒(催化剂)[catalyst]的合成词。光触媒是一种在光的照射下,自身不起变化,却可以促进化学反应的物质,光触媒是利用自然界存在的光能转换成为化学反应所需的能量,来产生催化作用,使周围之氧气及水分子激发成极具氧化力的自由负离子。几乎可分解所有对人体和环境有害的有机物质及部分无机物质,不仅能加速反应,亦能运用自然界的定侓,不造成资源浪费与附加污染形成。最具代表性的例子为植物的"光合作用",吸收对动物有毒之二氧化碳,利用光能转化为氧气及水。
半导体光催化氧化的原理
目前,研究最多的半导体材料有TiO2、Zno、CdS、WO3、SnO2等。由于TiO2的化学稳定性高、耐光腐蚀,并且具有较深的价带能级,催化活性好,可以使一些吸热的化学反应在光辐射的TiO2表面得到实现和加速,加之TiO2对人体无毒无害,并且通常成本较低,所以尤以纳米二氧化钛的光催化研究最为活跃。
我们知道当入射光的能量大于半导体本身的带隙能量(Bandgap)时,在光的照射下半导体价带(Valence band)上的电子吸收光能而被激发到导带(Conction)上,即在导带上产生带有很强负电性的高活性电子,同时在价带上产生带正电的空穴(h+),从而产生具有很强活性的电子--空穴对,形成氧化还原体系。这些电子--空穴对迁移到催化剂表面后,与溶解氧及H2O发生作用,最终产生具有高度化学氧化活性的羟基自由基(.OH),利用这种高度活性的羟基自由基便可参与加速氧化还原反应的进行,可以氧化包括生物氧化法难以降解的各类有机污染物并使之完全无机化,以TiO2为便说明有机物在光催化体系中的反应属于自由基反应。
TiO2光催化反应机理包括以下几个过程:
(1)光激发过程:
TiO2的带隙能Eg=3.2eV,可利用波长λ<=387.5nm的光子激发。在溶液中TiO2吸入λ<=387.5nm的光子后,即产生e- --h+(电子空穴)对。
TiO2 + hv----->e- + h+
(2)吸附过程:
TiO2在溶液中会发生如下的吸附反应:
Ol2-+Ti(IV) <-----> OlH-+Ti(IV) --- OH-
Ti(IV)+H2O <-----> Ti(IV) --- H2O
(3)复合过程:
e- + h+ <-----> heat
(4)捕集过程:
当TiO2粒子于水接触时,表面被羟基化,即h+可将吸附在TiO2表面的OH-离子和H2O分子氧化为.OH自由基,并仍吸附在TiO2表面。顺磁共振研究证明,在TiO2表面的确存在大量.OH自由基:
Ti(IV) -- OH- +h+ -----> Ti(IV) -- OH.
Ti(IV) -- H2O + h+ -----> Ti(IV) -- OH. + H+
与此同时,Ti(IV)吸收e-还原为Ti(III)若体系中有O2(溶解氧)存在,O2作为电子受体,生成过氧化物离子自由基:
Ti(IV) + e- <-----> Ti(III)
Ti(III) + O2 <-----> Ti(IV) -- O2-
(5) 其它自由基反应
Ti(IV) —— O2- .近一步还原生成H2O2:
Ti(IV) -- O2- + 2h+ <-----> Ti(IV) --H2O2-
Ti(IV) -- O2- + h+ <-----> Ti(IV) --H2O.
在溶液中,.OH、HO2.和H2O2之间可互相转化:
H2O2 + .OH <-----> H2O + HO2.
这样光能就可在短时间内以化学能的形式贮藏起来,实现光能与化学能之间的转化。
(6)羟基自由基氧化有机物:
大量事实表明,半导体光催化氧化并不是通过空穴直接进行,而是通过其中的.OH自由基发生作用。
Ti(IV) -- OH- + R1.ads -----> Ti(IV) --R2.ads
.OH + R1.ads -----> R2.ads
Ti(IV) -- OH- + R1 -----> R2
.OH + R1 -----> R2
.OH基是强氧化剂(E0=+3.07V),可将族碳链氧化为醇、醛、酸,最后脱羧生成CO2。对于芳香族化合物,OH.首先将苯环羟基化,然后与O2作用生成苯环上的过氧化自由基,进而开环生成族化合物,并随着氧化程度的加深,碳链逐步断裂,最终产物为CO2。 四、光催化氧化的潜在优势及其应用前景
由于光催化氧化法对于水中的烃、卤代有机物(包括卤代烃、卤代羧酸、卤代芳香烃)、羧酸、表面活性剂、除草剂、染料、含氮有机物、有机磷杀虫剂等有机物,以及氰离子、金属离子等无机物均有很好的去除效果,一般经过持续反应可达到完全无机化。所以半导体光催化氧化技术作为一种高级氧化技术,与生物法和其它高级化学氧化法相比,具有以下的显著优势: 1.以太阳光为最终要求的辐射能源,把太阳能转化为化学能加以利用。由于太阳光,对于人类来说取之不尽、用之 不竭,因此大大降低了处理成本,是一种节能技术。
2.光激发空穴产生的.OH是强氧化自由基,可以在较短的时间内成功的分解水中包括难降解有机物在内的大多数有机物,它还具有将水中微量有机物分解的作用,因此是一种具有普遍实用性的高效处理技术。
3.半导体光催化剂具有高稳定性、耐光腐蚀、无毒的特点,并且在处理过程中不产生二次污染,从物质循环的角度看,有机污染物能被彻底的无机化,因此是一种洁净的处理技术。
4.对环境要求低,对PH值,温度等没有特别要求。
5.处理负荷没有限制,即可以处理高浓度废水,也可以处理微污染水源水。
可见,半导体光催化技术既可以在处理废水时单独使用,也可作为对生物处理法的补充和完善,两种方法结合起来使用。
中国国土面积约为600多万平方公里,太阳能年辐射总量每平方厘米超过60万焦,开发利用前景十分广阔。在注重将太阳能转化为电能和热能应用的同时,也应注重将太阳能转化为化学能加以利用。
同时,根据我国目前净化水市场的发展情况看,半导体光催化易于在宾馆、办公室、家庭用净化器上首先取得成功。
总之,半导体光催化技术为彻底解决水污染提供了新的思路和新的方法,具有良好的应用前景。 五、光催化氧化染料废水的可生化研究进展
最理想的废水处理组合工艺是当今社会面临的一大挑战。一方面许多不同种类废水组成的问世,另一方面又要面对处理当中各种各样的问题。根据水的质量、最终需求和经济方面的要求,只用单一的处理技术是不可能完全达到要求或者是不经济的。例如,固体物质、油类和脂类的物理分离以及生物处理方法已经显示出在大多数情况下的经济性和可行性(市政废水、食品及农业加工废水等等),然而,也有一些情况下一友谊赛方法的处理效率并不理想。由此通常利用化学方法处理废水,其中大多数的原理是氧化--还原反应,而且已经转化为应用技术。台氯化、臭氧化和紫外照射过程,电化学处理以及利用.OH自由基氧化的方法,通过研究发现是一种去除有毒可溶性物质有效的方法。上述处理方法中的大多数已经被证实在该领域是十分有价值的,在去除污染物方面得到很好的结果。但是化学处理方法中也存在很多缺点,如需要大量氧化剂、能量及耗时等问题,与物理和生物方法相比仍显得价格较高。
使用如臭氧或.OH自由基这类的氧化剂进行对有机化合物的氧化,通常会产生新的氧化产物,在大多数情况下新生成的氧化产物比前者更容易被生物降解。
所以,考虑将化学氧化过程和生物氧化相结合。一方面,化学氧化过程可以有效的去除污染物的毒性,降低COD和色度等,有利于生物氧化过程的进行;另一方面,在和运行费用上,生物过程比化学过程便宜的多。生物过程的费用比采用如臭氧或过氧化物的化学过程要少五到十倍。与此同时,运行费用将少三到十倍。而且生物处理技术已经日臻成熟,已广泛的应用于水处理中。将光催化氧化技术与生物技术相结合必将是以后水处理的一个发展方向。

热点内容
13排2d电影坐第几排效果好 发布:2024-05-02 19:27:09 浏览:716
最好看的啄木鸟电影 发布:2024-05-02 19:18:18 浏览:428
《黑金》梁家辉 发布:2024-05-02 19:15:59 浏览:801
狂怒余男完整版百度云 发布:2024-05-02 18:09:33 浏览:799
变形金刚是那个公司出品 发布:2024-05-02 18:02:52 浏览:672
类似黑帮大佬电影 发布:2024-05-02 17:44:48 浏览:569
章子怡最色床戏 发布:2024-05-02 17:43:51 浏览:544
韩国影星李采潭全部影视 发布:2024-05-02 17:41:06 浏览:193
为什么日本小电影男生可以操那么久 发布:2024-05-02 16:52:20 浏览:880
换脸印度电影维语 发布:2024-05-02 16:47:37 浏览:690